

SIBER® TI SACROILIAC JOINT FUSION SYSTEM

IMPORTANT NOTE: The user of this system must read and acknowledge the conditions of this insert prior to use.

Consult the product electronic instructions for use for all current languages and latest document revision at corelinksurgical.com/ifu or by scanning the barcode on the product labeling.

DESCRIPTION

The Siber Ti Sacroiliac Joint Fusion System is an implant system used for temporary immobilization of the sacroiliac spine while fusion occurs. The Siber Ti system includes additively manufactured titanium alloy screw-type implants in various sizes and configurations to accommodate patient anatomy and surgeon preference. CoreLink 3D Mimetic Metal® presents a macro, a micro, and a nano-surface structure. The implants are provided with general and implant specific reusable manual surgical instruments for surgical site access, preparation, and implantation.

Implants in the Siber Ti Sacroiliac Joint Fusion System are manufactured from medical grade titanium alloy (Ti6AL4V ELI as per ASTM F-136 and ASTM F-3001).

Do not use any of the Siber Ti Sacroiliac Joint Fusion System components with components from any other manufacturer or system unless specifically allowed to do so in this or other CoreLink document. Implants in this system must never be reused under any circumstance.

The Siber Ti Sacroiliac Joint Fusion System includes a variety of manual surgical instruments manufactured from surgical grade stainless steel as per ASTM F899.

INDICATIONS

The Siber Ti Sacroiliac Joint Fusion System is intended for sacroiliac joint fusion for conditions including degenerative sacroiliitis and sacroiliac joint disruptions, to augment immobilization and stabilization of the sacroiliac joint in skeletally mature patients undergoing sacropelvic fixation as part of a lumbar thoracolumbar fusion and acute, nonacute, and non-traumatic fractures involving the sacroiliac joint. This includes those whose symptoms began during pregnancy or in the peripartum period and have persisted postpartum for more than 6 months.

CONTRAINDICATIONS

Do not use the Siber Ti Sacroiliac Joint Fusion System in the presence of an active or suspected latent systemic infection or infections localized to the site of the proposed implantation. Other relative contraindications include:

- Disease conditions that have been shown to be safely and predictably managed without the use of internal fixation devices.
- Severe osteoporosis as it may prevent adequate fixation of bone screws and thus preclude the use of this or any other sacroiliac instrumentation system.
- Tumor of sacral or iliac bone as it may present challenges in placement of implants due to size and location
- Unstable fracture of sacrum and/or ilium involving the sacroiliac joint as they may reduce the effectiveness of the implants to temporarily stabilize the affected region for assistance in bony fusion.
- Any entity or condition that totally precludes the possibility of fusion (i.e. cancer, kidney dialysis, osteopenia).
- Obesity, certain degenerative diseases, and foreign body sensitivity.
- Patient occupation, activity level, or mental capacity. Specifically, patients who because of their occupation or lifestyle, or because of conditions such as mental illness, alcoholism, or drug abuse, may place undue stresses on the implant during bony healing and may be at higher risk for implant failure.
- Allergy or foreign body sensitivity to any of the implant materials.

COMPLICATIONS AND ADVERSE EFFECTS

Use and/or misuse of this system may result in the following list of complications and potential adverse effects:

- Loosening of any or all components including screw back requiring surgical intervention. Disassembly, bending and/or breakage of any or all components.
- Inadequate fixation.
- Non-union, delayed union or mal-union.
- Allergic reaction to implant material, debris, corrosion products including metallosis, staining, tumor formation, and/or autoimmune disease.
- Infection.
- Wound healing disorders or hematomas.
- Pain, skin penetration, bruising, swelling, irritation, and fibrosis caused by skin pressure by implant components.
- Bursitis.
- Fracture, microfracture, resorption, damage, impingement, or penetration of any spinal bone at and above the level of surgery.
- Injury to intra-pelvic structures
- Loss of sensory and/or motor function including paralysis (complete/incomplete), dysesthesia, hyperesthesia, paresthesia, radiculopathy, pain, numbness, spasms, sensory loss, tingling sensation and/or visual deficit.
- Neuropathy, paraplegia, paraparesis, reflex deficit, irritation, neurological deficit (transient or permanent) and/or muscle loss.
- Scar formation possibly causing neurological compromise or compression around nerves and/or pain.
- Damage to the urological and/or gastrointestinal systems resulting in compromises including urinary retention, loss of bladder control, gastritis, bowel obstruction, loss of bowel control, consumption, etc. Decrease in bone density potentially caused by stress shielding.
- Cessation of any potential growth of the operated portion of the spine.
- Loss of or increase in spinal mobility or function.
- Hemorrhage, hematoma, occlusion, seroma, edema, hypertension, embolism, stroke, excessive bleeding, Phlebitis, wound necrosis, wound dehiscence, damage to blood vessels, or other types of cardiovascular system compromise.

- Reproductive system compromise, including sterility, loss of consortium, and sexual dysfunction.
- Limited ability to perform daily activities.
- Continuation of symptoms that were to be treated for by the implantation.
- Change in mental status. Development of respiratory problems, e.g. Pulmonary embolism, bronchitis, pneumonia, etc.
- . Difficulty in delivering fetus vaginally due to device-related restrictions of sacroiliac joint stretching.
- Death.

Additional surgery may be required to correct these potential adverse events and/or outcomes.

USE OF IMPLANT COMPONENTS

WARNING: The safety and effectiveness of sacroiliac fixation and fusion systems has only been established for degenerative sacroiliitis and sacroiliac joint disruptions. This system is not approved for screw attachment or fixation to the posterior elements (pedicles) of the cervical, thoracic, or lumbar spine. The safety and effectiveness of these devices for any other conditions are unknown.

Women of childbearing potential should be cautioned that vaginal delivery of a fetus may not be advisable following sacroiliac joint fusion. If pregnancy occurs, the woman should review delivery options with her obstetrician.

Patients must be informed that implants cannot be made to last indefinitely, and the purpose of the implant is to provide temporary internal support while fusion about the implant is developing. This device is not intended or expected to be the only mechanism of support of the spine. Regardless of the spinal pathology for which implantation of this device was chosen, solid biological support is anticipated but is not always obtained. Without solid biological support provided by sufficient fusion mass, the implants will fail in any of several modes. These modes may include bone-metal interface failure, implant fracture, or bone failure. Spinal implants of this type are more likely to fail if no bone graft is used or if a pseudarthrosis develops.

Spinal implants, like other implants or temporary internal fixation devices, have a limited life. The life of the implant is directly impacted by the level of activity of the patient. Inform the patient that any activity increases the risk that the implant components may become loose, bend, or break. Instruct patients about restrictions to their activity levels in the postoperative period. Examine patients postoperatively to evaluate the condition of implants and the development of the fusion mass about the implants. Instruct the patient that implants may bend, break, or loosen even though restrictions in activity are followed and even if fusion mass about the implant component sufficiently develops.

Internal fixation devices cannot withstand activity and loads equal to those placed on normal healthy bone. Until maturation of the fusion mass is confirmed, do not subject this device to the stress of full weight bearing, or implant fracture or deformation may result.

Spinal implants of this type may be removed after sufficient bone fusion develops. However, please inform the patient that a second surgical procedure may be necessary and that there are risks associated with a second surgical procedure. The decision to remove a broken implant must be made by the physician who must consider the risks associated with the presence of the broken implant and the condition of the patient.

Potential risks associated with the use of this system, which may require additional surgery, include: device component fracture, loss of fixation, non-union, fracture, neurological injury, vascular or visceral injury, neurological complications, over-distraction, trauma to nerve root or dura, incorrect injuly) incorrect inplant migration, pseudarthrosis, adjacent level disc degeneration, allergy or inflammation, general adverse effects related to surgical procedures (e.g. anesthesia, infection), subsidence, and expulsion. Risks and potential benefits must be provided to patients for whom this treatment modality is suggested.

This device must not be reused. Reuse may result in patient injury or other complications including but not limited to component fracture and/or deformation, breakage, difficulty with implantation, incompatibility with mating components and infection. It is the physician's responsibility to discard all damaged or mishandled implants.

In addition to the warnings and precautions discussed above, the patient must be informed about general surgical risks prior to surgery.

Refer to the Surgical Technique Manual for additional important information about this system, in addition to the information described herein.

PRECAUTIONS: The implantation of sacroiliac fusion systems is a technically demanding procedure that presents a risk of serious injury to the patient. Accordingly, such a procedure must be performed only by experienced spinal surgeons with specific training in the use of this sacroiliac fusion system. The surgeon must be thoroughly knowledgeable in the medical and surgical aspects of the implant procedure, and the surgeon must be thoroughly knowledgeable of the mechanical and metallurgical limitations of the implant components. It is the surgeon's responsibility to ensure that the operating procedure is performed correctly. The Surgical Technique Manual can be requested from CoreLink by calling the phone number at the end of this document. No manufacturer can be responsible for complications resulting from erroneous indication, wrong choice of implant size, incorrect operating procedure, and incorrect implant component combination. Internal fixation devices such as the Siber Ti Sacroiliac Joint Fusion System rely upon individual patient physiological response, and proper use of the device does not guarantee any result.

Use of the system off-label is forbidden by CoreLink.

The Siber Ti Sacroiliac Joint Fusion System has not been evaluated for safety and compatibility in the MR environment. The Siber Ti Sacroiliac Joint Fusion System has not been tested for heating migration, or image artifact in the MR environment. The safety of the Siber Ti Sacroiliac Joint Fusion System is unknown. Scanning a patient who has this device may result in patient injury.

PREPARATION AT THE POINT OF USE

The screws of the Siber Ti Sacroiliac Joint Fusion System are supplied sterile. Additionally, the 7.0mm Siber Ti screws and washers may be alternatively provided non-sterile and must be thoroughly decontaminated, cleaned, and sterilized prior to surgical use. Instruments must be cleaned using the following validated methods before sterilization and introduction into the surgical field. Instrument sets are provided with a system specific tray suitable for transportation and steam sterilization. Remove all packaging that individual devices may be provided in prior to cleaning. Clean instruments may be placed in the supplied instrument tray, then into an approved sterilization wrap or container. Some instruments in the Siber Ti Sacroiliac Joint Fusion System must be disassembled to facilitate cleaning. Failure to disassembled a soiled device may lead to inadequate reprocessing. All instruments should be reassembled following cleaning, prior to sterilization.

Prior to use, instruments must be inspected for signs of wear, damage and proper function. Drills and Taps must be inspected for wear and cutting flute damage. Drivers must be inspected to ensure correct and full engagement of implants. Dilators must allow for free passage of any instrument or implant. If you suspect an instrument is damaged, please contact CoreLink for a replacement.

Follow the Cleaning and Sterilization procedures below.

CLEANING AND STERILIZATION

Instruments exposed to tissue must be thoroughly cleaned after use. Dried residues from surgery will make the cleaning process more difficult and/or ineffective. Maximum recommended time between use and cleaning is 4 hours. Instruments should not be exposed to elevated air temperatures (>100 °F). Certain cleaning solutions such as those containing fixatives, alcohols, aldehydes, chlorides, and/or excessive amounts of basic detergents can cause degradation of stainless steel surfaces and laser marking. Use a cleaning and disinfecting agent that is compatible with aluminum, stainless steel, plastics, and silicone according to the manufacturer's instructions.

All instruments must be fully disassembled prior to cleaning (e.g. handles must be detached from shafts, driver shafts removed from drivers, and implants disconnected from mating instruments.)

Manual Cleaning Instructions:

- 1. Completely submerge the instruments in a lukewarm neutral pH enzyme solution and allow soaking for a minimum of 10 minutes. Use a soft-bristled brush to gently clean the instrument (particular attention must be given to crevices, cannulations, hinges, mated surfaces and other hard-to clean areas) until all visible soil has been removed. Brushing steps should be performed while submerged to prevent aerosols. A lumen brush must be used to clean cannulations. The enzyme solution should be changed on a regular basis in order to ensure its effectiveness.
- Remove the instrument from the enzyme solution and rinse in purified water (from one or any combination of the following processes: ultra-filter, RO, DI and/or distilled). Thoroughly flush cannulations, holes, and other difficult to reach areas with a syringe or equivalent tool.
- Prepare a neutral pH cleaning solution according to the manufacturer's instructions and place in an ultrasonic cleaning unit at 45-50 kHz to aid in thorough cleaning of devices.
- Completely submerge device in cleaning solution and sonicate for minimum of 14 minutes.
- 5. Rinse instrument in running purified water (from one or any combination of the following processes: ultra-filter, RO, DI and/or distilled) thoroughly for at least one minute. There must be no sign of detergent, blood, or soil in the rinse stream.
- Dry the instrument with a clean, disposable, absorbent, lint-free wipe. Instruments that require reassembly should be done so after drying.
- 7. Visually inspect instruments to ensure they are clean and in working order. If the device is found to not be visually clean, the previous cleaning steps must be repeated. NOTE: Instrument cases, trays, and caddies must be thoroughly cleaned according to the above instructions. Inspect the containment devices and if found to not be visually clean, repeat the previous cleaning steps.

Automated Cleaning Instructions:

- Rinse devices under running tap to remove gross soils. Particular attention must be given to crevices, lumens, mated surfaces and other hard-to-clean areas. Use a syringe or jetted water to flush difficult to reach areas.
- Place instruments in a suitable washer basket and process through a standard instrument washer. The table below represents the minimum parameters required for proper cleaning and disinfection.

Typical Automated Washer Cycle for Surgical Instruments

Step	Description
1	2-minute prewash with cold tap water
2	1 minute enzyme spray with hot tap water
3	2-minute detergent wash with hot tap water (64-66°C/146-150°F)
4	1-minute hot tap water rinse
5	2-minute thermal rinse (80-93°C/176-200°F)
6	10-second purified water rinse (64-66°C/146-150°F)
7	7 to 30-minute heated air dry (116°C/240°F)

Notes:

- The washer manufacturer's instructions should be strictly adhered to.
- Avoid impact, scratching, bending or surface contact with any material that might affect the implant surface or configuration.
- Pay attention to recesses as chemicals and rinse water may be entrapped in the recess after rinsing.
- Visually inspect all devices after cleaning to ensure cleanliness and function.

Sterilization Instructions

Sterile Implants: Implants (screws) of the Siber Ti system are provided "STERILE" via gamma irradiation and intended for single patient use only. DO NOT RESTERILIZE THIS PRODUCT. Sterility can only be assured if packaging is intact.

Implants and instruments of the Siber Ti Sacroiliac Joint Fusion System are provided nonsterile. The non-sterile condition is conspicuously set forth on the product label. Implants supplied non-sterile are clean. ISO 8828 or AORN recommended practices for in-hospital sterilization should be followed for all components.

Sterilization: In a properly functioning calibrated steam sterilizer, independent testing has shown that effective sterilization to a 10^{-6} sterility assurance level (SAL) may be achieved as follows:

Sterilizer type:	Pre-vacuum
Temperature:	132°C (270°F)
Full Cycle Time:	4 Minutes
Minimum Dry Time:	30 Minutes (allow for cool-down)

Instruments and implants must be sterilized in the steam sterilization cases provided by CoreLink. Instrument and implant sets must be wrapped in in two layers of 1-ply polypropylene wrap (Kinguard KC600 – 510(k) K082554 or similar wrap) using sequential envelope techniques. Only wraps validated to maintain sterility after processing are to be used. Saturated steam with a quality of 97-100% must be used. Do not stack instrument cases during sterilization.

REUSABLE RIGID STERILIZATION CONTAINERS

The Siber Ti Sacroiliac Joint Fusion System provided in a perforated steam sterilization case may be placed directly into Aesculap[™] SterilContainers[™]. Testing has demonstrated the system, when processed in Aesculap SterilContainer systems JK440, JK444, JK446 rigid containers (with corresponding JK series lid and re-usable JK series filter assembly), can be sterilized to a 10⁻⁶ sterility assurance level (SAL) in a Dynamic Air Removal (prevacuum) steam sterilization cycle when processed using the required sterilization cycle.

Required Sterilization Cycle

Sterilizer type:	Pre-vacuum
Temperature:	132°C (270°F)
Exposure Time:	4 Minutes
Minimum Dry Time:	30 Minutes (allow for cool-down)

CoreLink does not recommend the use of gravity displacement steam cycles for sterilization in Aesculap rigid container systems. Ensure that the supplied reusable rigid sterilization container is in proper working order prior to sterilization. Aesculap SterilContainer System has been validated ONLY with Aesculap reusable filters. For more information on the use of the Rigid Sterilization Containers please consult the Instructions for Use of the Manufacturer (https://www.aesculapusa.com/products/instructions-for-use).

THE STERILIZATION PARAMETERS PROVIDED IN THIS INSTRUCTIONS FOR USE SUPERCEDE THOSE LISTED IN THE AESCULAP INSTRUCTIONS FOR USE. ALL OTHER USAGE, CARE AND MAINTENANCE INSTRUCTIONS SPECIFIED IN AESCULAP DOCUMENTATION REMAIN APPLICABLE.

It is the end user's responsibility to use only sterilizers and accessories (such as sterilization wraps, sterilization pouches, chemical indicators, biological indicators, and sterilization cassettes) that have been cleared by the US FDA for the selected sterilization cycle.

Flash sterilization of the Siber Ti Sacroiliac Joint Fusion System is not recommended.

IMPORTANT CONSIDERATIONS AND WARNINGS.

Corrosion from Mixed Metals. Damage from corrosion may occur following surgical implantation of metals. All implanted metals and alloys display general or uniform corrosion, and the rate of corrosion implanted metals and alloys is typically low due to the presence of passive surface films on the implanted metals and alloys. The Siber Ti System implants are available in titanium alloy. It is imperative that the Siber Ti implants do not come into contact in-vivo with other dissimilar metals. Accelerated corrosion may occur when two dissimilar metals are in contact within the body environment. Corrosion may accelerate failure of implants. Corrosion also causes metal compounds to be released into the body.

- 1. Failure of Implants Due to Excessive Demands in Connection with Delayed Union or Nonunion. Implants of this type are temporary devices that are used to obtain alignment until normal healing occurs and bone fusion mass is developed. If healing is delayed, or does not occur, the implant may fail over time due to metal fatigue. The useful life of the implant will be in part affected by the degree or success of implant to bone union, loads produced by weight bearing, and activity levels. The useful life of the implant will be also in part affected by notches, scratches or bending of the implant which may occur during the surgical procedure. Please inform patients of the risks of implant failure.
- 2. Implant Selection. The selection of the proper size, shape, and design of the implant greatly contribute to the potential of satisfactory fixation. However, the size and shape, and condition of the patient's bones present limitations on the size, shape and strength of implants. Implants cannot withstand activity levels equal to those placed on normal healthy bone. As mentioned above, implants of this type are temporary and should not be expected to withstand indefinitely the unsuported stress of full weight bearing.
- be expected to withstand indefinitely the unsupported stress of full weight bearing.
 Patient Considerations. The following must be considered when evaluating whether a patient is a candidate for such a procedure.
 - a patient is a candidate for such a procedure.
 Weight. An overweight or obese patient can produce loads on the device that may lead to failure of the implant component.
 - Lifestyle or activity. If the patient is involved in an occupation or activity that includes heavy lifting, muscle strain, twisting, repetitive bending, stooping, running, substantial walking, or manual labor, he/she should not return to these activities until the bone is fully healed. Even after the bone is fully healed, the patient may not be able to resume these activities.
 Alcoholism, drug abuse or mental conditions. These conditions, among others,
 - Alcoholism, drug abuse or mental conditions. These conditions, among others, may cause the patient to ignore certain necessary limitations and precautions leading to implant failure or other complications.
 - Degenerative diseases. In some cases, the progression of a degenerative disease
 may be so advanced at the time of implantation that it may substantially decrease

the expected useful life of the implant component. In these cases, the use of the implant may only postpone potential outcomes and/or be of a temporary nature. **Implant sensitivity**. No preoperative test can completely exclude the possibility of sensitivity or allergic reaction. A patient may develop sensitivity or allergy after implants have been in the body for a period of time.

 Smoking. Smoking has been linked to a higher rate of pseudarthrosis following surgical procedures where bone graft is used. Additionally, smoking has been shown to cause diffuse degeneration of intervertebral discs. Smoking can also lead to progressive degeneration of adjacent segments and late clinical failure (recurring pain) even after successful fusion and initial clinical improvement.

ADDITIONAL PRECAUTIONS

- 1. Patient Instructions. Instructions for the patient's postoperative care, and the patient's ability and willingness to follow such instructions are extremely important for successful bone healing. In addition to the instructions described previously, instruct the patient on the limitations of the implant, and to limit and restrict physical activities, especially lifting and twisting motions and sports-related activities. Inform the patient that an implant is not as strong as normal healthy bone, and that the implant, could loosen, bend, and/or break if excessive demands are placed on the implant, especially in the absence of complete bone mass fusion. Inform the patient that improper activities may cause the implants to become displaced or damaged and cause the implant to migrate and damage nerves or blood vessels. As mentioned above, a patient having certain conditions, such as alcoholism, drug abuse, or other mental conditions may not properly use weight-supporting devices and may be particularly at risk during postoperative rehabilitation.
- 2. Implant Location. Because vascular and neurological structures are located near to the implantation site, there are risks of serious or fatal hemorrhage and risks of neurological damage during and after implantation procedure. Serious or fatal hemorrhage may occur if: (1) the great vessels are eroded or punctured during implantation or are subsequently damaged due to breakage or migration of implants; or (2) pulsatile erosion of the vessels occurs due to the placement of the implants adjacent to the vessels.
- 3. Implant Removal. Spinal implants of this type may require removal if the desired clinical and surgical outcomes are not obtained. The surgeon should carefully weigh the risks versus benefits when deciding whether to remove the implant. When the implant is removed, the surgeon should provide postoperative management to avoid refracture. If the patient is older and has a low activity level, the surgeon may choose not to remove the implant thus eliminating the risks involved with a second surgery. Although uncommon, permanent implantation of this device may result in the following: (1) Corrosion, with localized tissue reaction or pain; (2) Possible increased risk of infection; (3) Bone loss due to stress shielding (4) Bending, loosening, and/or breakage, which could make removal impractical or difficult; (5) Pain, discomfort, or abnormal sensations due to the presence of the device; (6) Migration of implant position resulting in injury; and (7) Risk of additional injury from postoperative trauma.
- 4. Do Not Reuse Implants. An implant previously implanted must never be reused. An implant previously implanted may have small defects that are not readily visible that may lead to early breakage, and compromise device performance and patient safety. Reuse may also lead to cross contamination and patient infection.

POSTOPERATIVE IMMOBILIZATION

Until X-rays confirm the development of a fusion mass, external immobilization (such as bracing or casting) is recommended.

Please inform the patient to reduce stress on the implants in order to reduce the risk of complications from fixation failure.

CAUTION: Under federal law, this device may only be sold by or on the order of a physician.

LIMITED WARRANTY AND DISCLAIMER

CORELINK PRODUCTS ARE SOLD WITH A LIMITED WARRANTY TO THE ORIGINAL PURCHASER AGAINST DEFECTS IN WORKMANSHIP AND MATERIALS. ANY OTHER EXPRESS OR IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS, ARE HEREBY DISCLAIMED.

IF MORE THAN TWO YEARS HAVE ELAPSED BETWEEN THE DATE OF ISSUE/REVISION OF THIS INSERT AND THE DATE OF CONSULTATION, CONTACT CORELINK CUSTOMER SERVICE FOR CURRENT INFORMATION AT 888-349-7808.

The Aesculap SterilContainer System is FDA 510(k) cleared under K792558, K053389, K040865, K093493, K093649, K041623, and K073168. All third-party trademarks used herein are the trademarks of their respective owners. Aesculap and SterilContainer are trademarks of Aesculap, Inc., a B. Braun Company.

For further information contact:

CoreLink, LLC 2072 Fenton Logistics Park St. Louis, MO 63026 (888) 349-7808

SYMBOLS GLOSSARY

Symbol	Description	ISO 15223 Reference
R	Prescription Required – Federal Law restricts this device to sale by or on the order of a licensed practitioner.	N/A
	Manufacturer - Indicates the medical device manufacturer.	5.1.1
	Use-by-Date – Indicates the date after which the medical device is not to be used.	5.1.1
LOT	Lot Number – Indicates the manufacture's batch code so that the batch or lot can be identified.	5.1.5
REF	Reference Number – Indicates manufacture's catalogue number so that the medical device can be identified.	5.1.6
STERILE R	Sterilized via Irradiation – Indicates a medical device has been sterilized using irradiation	5.2.4
NON	Non-Sterile – Indicates a medical device that has not been subject to a sterilization process.	5.2.7
(Do not re-use - Indicates a medical device that is intended for one use, or for use on a single patient during a single procedure.	5.4.2
ī	Consult instructions for use - Indicates the need for the user to consult the instructions for use.	5.4.3
\triangle	Caution – Indications the need for the user to consult the instructions for use for important cautionary information such as warnings and precautions that cannot, for a variety of reasons, be presented on the medical device itself.	5.4.4